
Mechatronics
MMME3085

Module Convenor – Abdelkhalick Mohammad

Timers and Counters

Lecture 3

Objectives of lecture

• To introduce the concept of timer/counters and their uses in the
Arduino

• To illustrate the use of register-level programming of hardware
• To introduce the concept of serial data communication
• To gain experience of using datasheet (a complex but complete

collection of data on a device.)

A typical Mechatronics System

Computer
or micro-
processor

Program
e.g., in C

Buses
in
computer

Digital
signal

Analogue
signal

Digital
signal

Digital
signal

Analogue
signal

Digital signal

Digital
output
inter-
face;
timer

DAC Electronic
hardware

Actuators

Mechanical
system

Digital
input
inter-
face;
counters

Sensors

ADC Electronic
hardware

1,4,10

2,3,10
5,6

7,8,9

Recap

Digital input and output – so far…

• Last time we looked at
• Different forms of signals: analogue, digital, trains of

pulses
• It was more about detail on digital signals
• Computer architecture and how we need to make an

interface to the computer
• Digital input and output including digitalRead(),
digitalWrite() and the use of direct port access via
registers

Digital input and output – so far…

• Digital input:
§ The Arduino way

bool pinState = digitalRead(12);
§ Using registers

Pin 12 is bit no 6 of Port B!
bool pinState = PINB & (1 << 6);

• Digital output:
§ The Arduino way

digitalWrite(13, pinState);
§ Using registers

Pin 13 is bit no 7 of Port B
PORTB |= (1 << 7); // sets bit 7

Note: PINB is a register,
and it lives at address 0x23

Trains of pulses

Dealing with trains of pulses

• Usually regarded as a form of digital signal:
• Voltage alternates between two levels (square

wave) e.g., using TTL standard.
• Freq. of the pulse train or the no. of pulses.
• If we treat this as a digital signal, we are

interested in “rate” rather than “state”.
• To have an up/down count (e.g., encoder) we

need two sets of pulses 1/4 phase out of step
(quadrature pulses) and a suitable decoder.

Dealing with trains of pulses

• In principle:
• Can use repeated read of inputs to monitor for input events

(i.e., “polling”).
• Can create pulses using software – write high output, wait,

write low output, repeat!
• Not advisable with general-purpose operating systems

e.g., Windows
• For example, stepper motor pulses slowed on mouse

moves or antivirus activation!
• Even in Arduino, may not be fast enough!

What is the solution?!

Hardware Timers or Counters (T/C)

• A piece of hardware that is dedicated for
counting pulses or pulse generation!

• Useful for real time generation of pulses
and frequency counting on PC and other
computers.

• As the 8254 T/C, available on boards that
simply slot into back of PC.

• They are built into the Arduino Uno,
Mega etc. but are slightly different from
those on 8254.

What is a Counter?!

What is a Counter?!

Output
Gate

Clock
Counter
Register

A counter is a device which stores the
number of times a particular event
has occurred (a clock). The values on
the (output) lines represent a number
in the binary. Each pulse applied to
the clock input increments or
decrements the number on the
counter.

What is a Counter?!

• Counter Register
• Stores the current count

• Clock (also known as source)
§ Input signal that changes the current count
§ Active edge (rising or falling) of input signal changes the

count
§ Choose if count increments or decrements on an active edge

• Gate (not directly available on Arduino counters)
§ Input signal that controls when counting occurs
§ Counting can occur when gate is high, low, or between

various combinations of rising and falling edges
• Out

• Output signal used to generate pulses

Clock

What is a Timer?!

Same hardware as a counter but:
§ The clock is connected to a known

frequency source.
§ The frequency source can be external

or internal source.
§ The counter counts to a particular

value and then it can flip/toggle its
output (e.g., from 0 to 1 or from 1 to 0).

§ In this way we can generate a train of
pulses

§ We will visit this in more details later!

Clock

Timers and Counters
on the Arduino

T/C in the AVRs

Input pulses

TCNT Register

The counter output

• T/C in the AVRs are either 8 or 16 bit wide.
• They count upward or downwards.
• With 8 bits they count from 0 to 255,

with 16 bits from 0 to 65,535.
• If they reach and exceed their upper limit,

they restart again at zero (or
decreases until zero).

• Their actual count state is available by
reading the port TCNT (8 bits) or the
ports TCNTH and TCNTL (16 bits)

• Those can be written (i.e., assign a value
into the register), too, and the timer
counts from this changed state.

T/C in the AVRs

The counter output

The counter output

• T/C in the AVRs are either 8 or 16 bit wide.
• They count upward or downwards.
• With 8 bits they count from 0 to 255,

with 16 bits from 0 to 65,535.
• If they reach and exceed their upper limit,

they restart again at zero (or
decreases until zero).

• Their actual count state is available by
reading the port TCNT (8 bits) or the
ports TCNTH and TCNTL (16 bits)

• Those can be written (i.e., assign a value
into the register), too, and the timer
counts from this changed state.

T/C on Arduino Uno and Mega

• On the Arduino Uno there are three Timer/Counters
T/C0, T/C 1, and T/C2

• On Arduino Mega there are six Timers/Counters (0-5)
T/C0, T/C1, T/C2, T/C3, T/C4, and T/C5

• T/C0 is 8-bit: Normally been used for the timer functions, like
delay(), millis(), and micros().

• T/C1 is 16-bit: Normally been used for Servo Library (this is
done by T/C5 on Mega).

• T/C2 is 8-bit like T/C0 and the tone() function uses T/C2.
• T/C3, T/C4, and T/C5 are only available on Arduino Mega

boards. These T/Cs are all 16-bit

T/C on Arduino Uno and Mega

• You can see the details of a
typical timer on an Arduino in
the figure on the right-hand
side!

Let us have a detailed look!

This is the T/C control logics (i.e., the
combination of the flip-flops). Top and
Bottom determine the upper and the lower
limits of the counting process, respectively

T/C on Arduino Uno and Mega

• You can see the details of a
typical timer on an Arduino in
the figure on the right-hand
side!

Let us have a detailed look!

This part is to select the clock source:
(1) from external source (e.g., encoder)
or (2) internal source (prescaler)

T/C on Arduino Uno and Mega

• You can see the details of a
typical timer on an Arduino in
the figure on the right-hand
side!

Let us have a detailed look!

TCNTn: T/C’s Register. The actual
timer value is stored here, n refers to
T/C number (e.g., TCNT2 stores the
counts from T/C2)

T/C on Arduino Uno and Mega

• You can see the details of a
typical timer on an Arduino in
the figure on the right-hand
side!

Let us have a detailed look!

TCCRnA: Control Register A of T/C number n
TCCRnB: Control Register B of T/C number n
You can change the T/C ‘s behaviour via the
T/C control register.

We will learn how to do this later J

T/C on Arduino Uno and Mega

• You can see the details of a
typical timer on an Arduino in
the figure on the right-hand
side!

Let us have a detailed look!

This part includes Output Compare
Registers A and B of T/C number n. We
can set some values in these registers to
control the T/C’s behaviour.

T/C on Arduino Uno and Mega

• You can see the details of a
typical timer on an Arduino in
the figure on the right-hand
side!

Let us have a detailed look!

The status of these pins can be changed
when the value in counting register
match the value in OCRnA/B. This can
be used to generate frequency.

8-bit T/C on Arduino

These are the main components of
any 8-bit T/C on an Arduino!

Now the question is:

What are the differences between
8-bit T/C and 16-bit T/C?!

8-bit vs 16-bit T/C

Not found in
the 8-bit T/C!
What is it?!

8-bit vs 16-bit T/C

Not found in
the 8-bit T/C!
What is it?!

The 16-bit T/C incorporates an input
capture unit that can capture external
events and give them a time-stamp
indicating time of occurrence.
ICPn: Input Capture Pin of T/C number n
ICRn: Input Capture Register of T/C
number n

T/C Modes of
Operation

T/C Modes of operations

The T/C can be operated in different modes according to the
control registers settings. The common modes of operations are
as follows:
• Normal Mode
• Clear Timer on Compare Match (CTC) Mode
• Fast PWM Mode
• Phase Correct PWM Mode
• Phase and Frequency Correct PWM Mode

In this module, we will consider only the first three modes of
operation!

1. Normal Mode

• In this mode the counting direction is always up
(incrementing), and no counter clear is
performed.

• The counter simply overruns when it passes its
maximum 8/16-bit value (MAX = 0xFF/0xFFFF)
and then restarts from the BOTTOM
(0x00/0x0000).

• The Output Compare units can be used to
generate interrupts at some given time. Using the
Output Compare to generate waveforms in
Normal mode is not recommended, since this will
occupy too much of the CPU time.

• The Input Capture unit is easy to use in Normal
mode.

2. Clear Timer on Compare Match (CTC) Mode

• In CTC mode the counter is cleared
to zero when the counter value
(TCNTn) matches either the OCRnA
or the ICRn (later we see this).

• The OCRnA or ICRn define the top
value for the counter, hence also its
resolution.

• This mode allows greater control of
the compare match output
frequency.

• It also simplifies the operation of
counting external events.

3. Fast Pulse Width Modulation (Fast PWM) Mode

• Pulse-width modulation (PWM) is a method of
controlling the average power delivered by an
electrical signal.

• The average value of voltage (and current) fed to
the load is controlled by switching the supply
between 0 and 100% at a rate faster than it takes
the load to change significantly.

• The term duty cycle describes the proportion of
'on' time to the regular interval or 'period' of time

• Duty cycle is expressed in percent, 100% being fully
on.

• When a digital signal is on half of the time and off
the other half of the time, the digital signal has a
duty cycle of 50% and resembles a "square" wave.

• When a digital signal spends more time in the on
state than the off state, it has a duty cycle of >50%.

• When a digital signal spends more time in the off
state than the on state, it has a duty cycle of <50%.

Before we learn about the Fast PWM mode,
what is a PWM?!

3. Fast Pulse Width Modulation (Fast PWM) Mode

• In the simplest PWM mode, the timer repeatedly counts from 0 to its maximum capacity (e.g., 255 for 8-
bit T/C).

• The output turns on when the timer is at 0 and turns off when the timer matches the output compare
register (OCRnA or OCRnB).

• The higher the value in the output compare register, the higher the duty cycle. This mode is known as Fast
PWM Mode.

• The following diagram shows the outputs for two values of OCRnA (high value) and OCRnB (low value).
Note that both outputs have the same frequency, matching the frequency of a complete timer cycle.

3. Fast Pulse Width Modulation (Fast PWM) Mode

Can we make it even faster?!
Yes! By varying the timer top limit: fast PWM

• In this mode, the timer counts from 0 to OCRnA
(the value of output compare register A), rather
than from 0 to its maximum capacity (e.g., 255).

• This gives much more control over the output
frequency than the previous modes.

• Note that in this mode, only output B can be used
for PWM; OCRnA cannot be used both as the TOP
value and the PWM compare value.

TOP

• TCNTn counts (up) until matches value in ICRn
(“TOP”), resets to 0, restarts.

• This sets output high at each cycle start.

Can we make it even faster and use OCnA
output as well?!

Yes! By varying the TOP value using ICRn

T/C Modes of
Operation Settings

T/C Control Registers Settings - TCCRnA

Example: n = 5

T/C Control Registers Settings - TCCRnA

Example: n = 5

• WGMn1:0 This is a Waveform Generation Mode bits.
• Combined with the WGMn3:2 bits found in the TCCRnB,

these bits control the counting sequence of the counter, the
source for maximum (TOP) counter value, and what type of
waveform generation to be used.

T/C Control Registers Settings – TCCRnA and TCCRnB

Example: n = 5

T/C Control Registers Settings - TCCRnB

Example: n = 5

T/C Control Registers Settings - TCCRnB

Example: n = 5

ICNCn: Input Capture Noise Canceler
ICESn: Input Capture Edge Select
- : Reserved

We will not use these three bits in the module!

T/C Control Registers Settings - TCCRnC

Example: n = 5

FOCnA: Force Output Compare for Channel A
FOCnB: Force Output Compare for Channel B
FOCnC: Force Output Compare for Channel C
- : Reserved

We will not use these three bits in the module!

T/C Control Registers Settings - Interrupt Mask Register (TIMSKn)

Example: n = 5

• Bit 3/2/1 – OCIEnC/B/A: T/Cn, Output Compare C/B/A
Match Interrupt Enable: When this bit is written to one, and
the I-flag in the Status Register is set (interrupts globally
enabled), the T/Cn Output Compare C/B/A Match interrupt is
enabled.

• Bit 0 – TOIEn: T/C, Overflow Interrupt Enable: When
this bit is written to one, and the I-flag in the Status Register is
set (interrupts globally enabled), the T/Cn Overflow interrupt is
enabled.

• Bit 5 – ICIEn: T/Cn, Input Capture Interrupt Enable:
When this bit is written to one, and the I-flag in the Status
Register is set (interrupts globally enabled), the T/Cn Input
Capture interrupt is enabled.

T/C Applications
(1) Frequency Generation

Our old “Friend” Blink!

Can we make it
even FASTER?!

Arduino IDE: Easy in
programming but Slow

Register Level: Harder
in programming but

run faster!
At “delay” the microprocessor is just “waiting”!

Yes, the answer is T/C J

Our old “Friend” Blink!

• The output C of T/C1 on Arduino Mega is connected to
pin 13 (LED).

• We aim to turn it on and off with a frequency of 0.5Hz.
(i.e., 1 sec on and 1 sec off)

• We will use few lines of code to configure T/C1 to
generate a frequency on its output C (i.e., pin 13).

How it works:
• Uses “clear timer on compare match” (CTC) mode.
• The value in the counter register (TCNT1) increases until it reaches the value in output compare register (OCR1C).
• At this point, the output pin OC1C swaps state, resets TCNT1 to 0.
• Big OCR1A=low frequency, small OCR1A=high frequency.
• The waveform frequency is defined by

• The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).
• If the output frequency is 0.5Hz, f_clk_i/o=16,000,000 Hz, we can select N=1024, then the value in the OCR1A

will be 15624.
• If we select N=256, then the value in the OCR1A will be 62499.
• Note: the value in OCR1A cannot exceed its maximum capacity (i.e., 16-bit 65535)!

OCR1A

OC1C

Our old “Friend” Blink!

P

?

T/C Control Registers Settings - TCCRnB

Example: n = 5

Our old “Friend” Blink!

P

P
?

T/C Control Registers Settings - TCCRnA

Example: n = 5

Our old “Friend” Blink!

P

P
P

?

T/C Control Registers Settings - TCCRnB

Example: n = 5

Our old “Friend” Blink!

P

P
P

P
P

Understand concepts in comments, don’t learn details!

Our old “Friend” Blink!

Arduino IDE: Easy in
programming but slow

Register Level:
Harder in

programming but
run faster!

At “delay” the microprocessor is just “waiting”!

T/C: The job is purely don
by hardware!

The processor can do
other jobs!

T/C Applications
(2) Counting High
Frequency Pulses

Counting High Frequency Pulses

• Let us consider an external pulse source is connected to Arduino Mega (pin 47).
Note: one pin (only) on Uno or Mega can be used as the input to a counter.

• We aim to count how many pulses we receive on this pin and show the number of
the monitor.

• Pin 47 is connected to the input of T/C 5.
• Configure T/C 5 to have input from external pulse

source (not internal clock).
• Every pulse increments counter register TCNT5 by 1.
• Configure the T/C to run in the “normal” mode, it

resets to zero (“overflows”) every 65536 (its
maximum capacity!) pulses.

• Read the value in the counter register and calculate
total pulses.

Task

How it works:

Counting High Frequency Pulses

P

P

?

T/C Control Registers Settings - TCCRnB

Example: n = 5

Counting High Frequency Pulses

P

P

P
?

T/C Control Registers Settings - TCCRnA

Example: n = 5

T/C Control Registers Settings - TCCRnB

Example: n = 5

Counting High Frequency Pulses

P

P

P
P

P

What will happen if the TCNT5
register is full?!

We will trigger an interrupt when the TCNT5 register is
full (i.e., overflows), so we can keep track of number of
overflows (we will call it biglaps) and hence total count.

T/C Control Registers Settings - Interrupt Mask Register (TIMSKn)

Example: n = 5

• Bit 3/2/1 – OCIEnC/B/A: T/Cn, Output Compare C/B/A
Match Interrupt Enable: When this bit is written to one, and
the I-flag in the Status Register is set (interrupts globally
enabled), the T/Cn Output Compare C/B/A Match interrupt is
enabled.

• Bit 0 – TOIEn: T/C, Overflow Interrupt Enable: When
this bit is written to one, and the I-flag in the Status Register is
set (interrupts globally enabled), the T/Cn Overflow interrupt is
enabled.

• Bit 5 – ICIEn: T/Cn, Input Capture Interrupt Enable:
When this bit is written to one, and the I-flag in the Status
Register is set (interrupts globally enabled), the T/Cn Input
Capture interrupt is enabled.

Counting High Frequency Pulses

P

P

P
P

P

What will happen if the TCNT5
register is full?!

If overflow happens, this routine will be executed! This
will increase biglaps with 1.

P
P

P

Counting High Frequency Pulses

P

P

P
P

P
P
P

P

Understand concepts in comments, don’t learn details!

Your turn now… Finish as Homework J

• You need to configure T/C 1 to output PWM (“fast PWM”) on pin
13 at 20 kHz.

• Several possible solutions but suggest:
• T/C 1 fed with 16 MHz clock signal directly (divisor 1, i.e., no

prescaling)
• Fast PWM: TCNT1 counts up until matches value in ICR1

(“TOP”), resets to 0, restarts
• This sets output high at each cycle start
• Output C goes low (reset) when counter register TCNT1 matches

value in OCR1C (i.e., “clears on compare match”)

Your turn now… Finish as Homework J

Where to start:
• Look for CS0…2 combination which gives 16 MHz clock source

directly
• Look for WGM0..3 combination (mode) which gives fast PWM, TOP

set by ICR1
• Look for COM1C0..1 settings which give “output compare match”

which resets output C to 0 when TCNT1 matches OCR1C
• Build up TCCR1A, TCCR1B from these
• Assume TCCR1C is 0, no need for TIMSK1.

Your turn now… Finish as Homework J

Some practical points:
• Use the skeleton program provided
• Pin 13 must be declared as an output (either use
pinMode() or set the appropriate bit of the appropriate
port direction register)

• Set the value required for ICR5 to get 20 kHz according to
the formula: fPWM = fclock/(prescaler´(1+ICR5))

• For a given duty cycle (which you can enter via the serial
monitor), calculate the value to be written to OCR5C then
write it there!

Summary

• Explained why simple interface is not good for
counting events or measuring frequencies

• Introduced need for hardware timer-counters
• Examined timer-counters configuration using

registers
• Applications of T/C such as frequency generation,

counting high frequency pulses and generating
PWM.

• Gain some experience of using datasheet.

